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We calculate the dependence of the direct band gaps E0 on temperature in the 
narrow-gap materials InP, InAs, InSb, and GaSb. Our calculation is based on 
the Allen-Heine approach and includes two effects: (i) thermal expansion and (ii) 
ehctron-phonon interaction. The latter when expanded in perturbation theory up to 
second order in the atomic displacements includes two terms: Debye-Waller and self- 
energy (or Fan-) terms. The results obtained by including all these terms within the 
rigid-pseudoion model compare reasonably well with available experimental results. 

InP, InAs, InSb, and GaSb are four narrow-gap 
semiconductors with great potential for use in infrared 
lasers or other electro-optical devices. [1] Therefore, the 
knowledge of the band  structures of these materials 
along with their temperature dependence is of tech- 
nological interest. In recent years, some experimental 
work has been performed to investigate the magnitude 
of E0, the direct band gap at the r-point, as a function 
of temperature in these materials. [1-7] In this work, we 
describe briefly the theory of the temperature depen- 
dence of band gaps and compare the results obtained 
for Eo from such a calculation with those found ex- 
perimentally for the narrow-gap semiconductors listed 
above. Our work gains additional importance by the 
fact that the same electron-phonon interactions that 
cause the band gap changes also the determine the high- 
field transport properties of solids. 

The process of finding a theoretical description for 
the temperature dependence of the band structure has 
been rather long and cumbersome. [8-13] The funda- 
mental technique was formulated by Allen and Heine 
[14] and includes two contributions to the temperature 
dependence of the gaps: (i) The effect of thermal ex- 
pansion is a trivial increase of the lattice constant with 
increasing temperature thereby shrinking (sometimes 
widening) the band gaps. This effect accounts only for 
at most 30% of the observed shifts and sometimes (like 
in the case of the indirect gap of silicon) even yields the 
wrong sign. (ii) The renormalization of the electronic 
energies due to electron-phonon interaction gives rise to 
two terms: The Debye-Walhr (DW) term can be calcu- 
lated rather easily and gives the dominant contribution. 
[15] The self-energy (or Fan-term), though smaller, is 
often opposite in sign to the DW term. Therefore, an 
approach which neglects the self energy may overesti- 
mate the band gap shrinkage. [15] 

The Allen-Heine formalism treats both the DW and 
self-energy terms on an equal footing. [14] They are 
obtained upon expansion of the electron-phonon inter- 

action in perburbation theory and retaining terms up 
to second order in phonon amplitudes. The DW term 
corresponds to a two-phonon process, whereas the self- 
energy term is an iterated one-phonon process. This 
method has been used successfully to describe the low- 
ering of the direct gaps with increasing temperature in 
Si, Ge, [16,171 and GaAs [10 I. The numerical proce- 
dure is discussed in detail in Ref. [18]. We have veri- 
fied that the "acoustic sum rule" used to evaluate the 
self energy term (see Ref. [16]) is also valid for com- 
pounds consisting of atoms with different masses. We 
use an empirical local pseudopotential band structure 
for InP, InAs, InSb, and GaSb with the form factors 
suggested previously [19] for InP and from Cohen and 
Bergstresser [20] for the other materials. Details of the 
interpolation of the pseudopotential form factors and 
their extrapolation [21] to ~'=0 have a negligible effect 
on the magnitude of the shifts, hut the form factors 
from Ref. [22] clearly overestimate the strength of the 
electron-phonon interaction in InSb. The phonon states 
were calculated with the 10-parameter valence overlap 
shell model [23,24]. The summation over all the phonon 
wave vectors ~ in the Brillouln zone (BZ), necessary to 
include all possible scattering channels, was performed 
with the tetrahedron method using a mesh of 09 k- 
points which spans over 228 tetrahedra in an irreducible 
wedge of the BZ. Increasing the number of k-points in 
the mesh to 505 changed the energy shifts by less than 
2 meV for InP. The denominators in the expressions 
of the DW and self energy terms contain energy diffcr- 
ences AE = E ~  - E,,.~+#, where nk are the initial and 
n', ~c + ( the intermediate electron states the carriers 
scatter into via phonon absorption or emission. We at- 
tached a Lorentzian broadening of 0.02 Ry to each such 
denominator in order to avoid numerical instabilities 
during integration. This also endows each of the elec- 
tronic states with an imaginary self energy correspond- 
ing to 0.01 Ry, which is roughly what one obtains from 
the calculations of the hroadenings or ultrafast relax- 
ation of carriers at different k-points. [25] The thermal 
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Temperature dependence of the direct band 
gap E~ of InSb. The dashed lines show 
the data of Refs. I1,2,51, measured between 
0 and 300 K. The dotted lines extrapolate 
the experimental results to 600 K. The solid 
line displays the calculated shifts, including 
thermal expansion, Debye-Waller and self- 
energy term. For comparison, the contribu- 
tions of thermal expansion (dashed-dotted) 
and self energy term (dashed-double dotted) 
alone are also given. 

expansion effects were obtained easily using the thermal 
expansion coefficients, bulk moduli, and pressure coef- 
ficients taken from Refs. [26-28] The calculations were 
performed on a MicroVAX II minicomputer and used 
about ten hours of CPU time for each material. 

In order to reduce the computational effort, the 
shifts were calculated for bands without spin-orbit in- 
teraction, which could change the size of the energy de- 
nominators mentioned above slightly. In order to study 
this effect we calculated these denominators with and 
without spin-orbit interaction for InAs, but obtained 
the matrix elements of the electron-phonon interaction 
from the unperturbed wave functions. We found that 
the shifts between 0 and 600 K were smaller when spin- 
orbit interaction was taken into account (as could have 
been expected), but only by about 10 meV, mainly due 
to a smaller self energy at the top of the valence band. 
The effects of spin-splittings on the Debye-Waller term 
(which is purely of orbital origin and can be calculated 
without energy denominators~151) are smaller. In con- 
trast, we have shown previously [25] that spin-orbit con- 
tributions to the temperature dependence of the broad- 
enings of critical points can be significant. 

We show our results in Figs. I-4 in comparison with 
experiments. Figure 1 displays the direct gap Ee in 
InSb as a function of temperature. The dashed lines 

~ the r~ults of different experiments [1,2,5] performed 
ween o and 300 K. The dotted lines extrapolate the 

experimental results to 600 K. The dashed-dotted line 
shows the influence of thermal expansion only, which 
accounts for 20-30% of the observed shift. The dashed- 
double dotted line gives the self energy contribution, 
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Fig. 2. As Fig. 1, but for GaSb with the experi- 
mental results from Refs. [1,4]. 

which leads to a band gap widening with increasing 
temperature and partially cancels the dominant Debye- 
Waller-term (not explicitly shown in Fig. 1). The total 
calculated temperature dependence of Eo, inchding all 
three terms, is represented by the solid line. Our the- 
ory overestimates the band gap shrinkage between 0 K 
and 300 K by shout 40% and predicts InSb to be a 
semimetal for temperatures above 600 K. (The melt- 
ing point of InSb ns 800 K, see Ref. [261. ) We stress 
that there were no adjustable parameters used in this 
calculation. Figures 2 and 3 show the results of our 
calculations for GaSb and InAs (solid lines). It can be 
seen that the agreement with the data of Refs. [1,4] is 
reasonable for GaSb, whereas the deviation from the 
experiments [1,2,29,30] for InAs is larger, possibly due 
to a numerical problem with the evaluation of the self 
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As Fig. 1, but for InAs with the experimen- 
tal results from Refs. [1,2,29,30]. 
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Fig. 4. As Fig. i, but for InP with the experimental 
results from Re[s. [29,6,7]. 

energy in the conduction band for the interaction with 
the transverse acoustic phonon at L. The difference be- 
tween our calculated shifts for InP (solid line in Fig. 
4) and the accurate photoreflectance results of Ref. [7] 
(dashed) is also reasonable. 

The agreement between theory and experiments is 
not as good for the compounds investigated in this 
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study as that obtained for the temperature and iso- 
tope shifts of gaps of lighter materials like diamond, 
[31] silicon, [16,17] and GaAs. [18] It is possible that 
the rigid-ion model becomes inaccurate for compounds 
with heavy atoms. This could be checked by calculating 
the electron-phonon matrix elements at high-symmetry 
points using ab initio electronic structures in conjunc- 
tion with the frozen-phonon technique, [32-34] since 
such an approach would recalculate the charge densi- 
ties and ionic potentials for the deformed crystal. The 
frozen-phonon technique calculates the electron-matrix 
elements from differences of crystal potentials rather 
than from a Taylor expansion [35] involving the deriva- 
tive of the potential. 

In conclusion, we have calculated the temperature 
dependence of the direct band gap in the narrow-gap 
compounds InP, InAs, InSb, and GaSb using the rigid 
pseudo-ion method. Our theory, when compared to ex- 
perimental results, overestimates the shifts consistently 
by about 20-30%, possibly because of the use of inter- 
polated empirical pseudopotentials or because of fun- 
damental problems with the rigid-ion model for heavy 
materials. Other sources of uncertainties, like numerical 
problems with the BriUouin-zone integration necessary 
to calculate the self energy due to deformation-potential 
electron-phonon interaction or the influence of the spin- 
orbit interaction, were shown to have negligible effects. 
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